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1 INTRODUCTION

Inorganic pyrophosphate (PPi) exists in extracellu�
lar fluids (ex: synovial fluid, blood plasma, urine) and
plays important physiological roles during bone calci�
fication and mineralization, such as blockage of calci�
fication (Ryan 2001). Deficient PPi promotes patho�
logic mineralization with basic calcium phosphate
(BCP) crystals whereas excess PPi causes calcium
pyrophosphate dihydrate (CPPD) crystals accumula�
tion (Altman et al., 1973; Silcox and McCarty, 1974;
Ryan 2001). Accumulation of both BCP and CPPD
crystals causes serious pathological defects, especially
on articular tissue (Ho et al., 2000; Rutsch et al.,
2001). Thus, balance of PPi concentration is a crucial
factor to keep normal function of bone and joints.

Extracellular/intracellular PPi shuttling is con�
trolled by a membrane protein, ankylosis progressive
homolog (Ankh), which is encoded by ankh gene (Ho
et al., 2000). The molecular structure of ankh genes
has been determined in frog (Nürnberg et al., 2001),
chicken (Wang et al., 2005) and mammals (Hakim
et al., 1986; Hughes et al., 1995; Ho et al., 2000; Zimin
et al., 2009). In zebrafish, two ankh genes, ankha and
ankhb, are reported (Ho et al., 2000; Strausberg et al.,

1 The article is published in the original.

2002), but their expression information during early
embryogenesis are still limited.

As it might be expected, mutation on ankh gene
induces calcification disorder or other pathological
defects. For example, craniometaphyseal dysplasis
(CMD), a rare inherited disorder of bone in human, is
due to ANKH mutation (Nürnberg et al., 2001). The
clinical signs and symptoms of CMD include over�
growth and sclerosis of the craniofacial bones and
abnormal modeling of the metaphyses of the tubular
bones (Nürnberg et al., 2001). In mice, inactivation of
ANK leads to generalized, progressive form of arthritis
accompanied by mineral deposition, formation of
bony outgrowths, and joint destruction (Ho et al.,
2000). In zebrafish, two ankh genes, ankha and ankhb,
are identified but mutation in zebrafish ankh genes has
not discovered thus far.

To elucidate the physiological functions of ank
genes during early embryogenesis, it is worthy to ana�
lyze comparatively ank genes across species. Here, we
report the spadiotemporal expressions of two zebrafish
ank homolog (ankh) genes by whole mount in situ
hybridization and reverse transcriptase polymerase
chain reaction (RT�PCR) experiments. This gene
expression data will provide more insight into the
functional studies of the lower vertebrate ankh genes.
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MATERIALS AND METHODS

Fish Embryos Staging

Mature zebrafish (AB strain) were raised at the
zebrafish facility of the Life Sciences Development
Center, Tamkang University. The fish were maintained
at 28°C with a photoperiod of 14 h light and 10 h dark,
in an aquarium supplied with freshwater and aeration
(Chen et al., 2009; Wang et al., 2009a). Embryos were
produced using standard procedures (Westerfield,
1995) and were staged according to standard criteria:
hours postfertilization, hpf; or days postfertilization
(dpf; Kimmel et al., 1995).

RNA Isolation and Reverse Transcription�Polymerase 
Chain Reaction (RT�PCR)

We corrected 100 embryos per stage to extract their
total RNA. RNA isolation and first�stand cDNA syn�
thesis procedures were according to the previous
report with minor modification (Chen et al., 2001;
Wang et al., 2009b; Lai et al., 2011). Primer sets
(ankha�F: 5'�GGGAGCCCTTGTGCGATTCACT�3',
ankha�R: 5'�TGGCATGATGCAGAGCTCTGCGA�3';
ankhb�F: 5'�GAACAATGGAGAAGCCGTCAGCA�3',
ankhb�R: 5'�ACGACCATACAGAGCACCGCT�3';
and β�actin�F: 5'�GTCCCGTACGCCTCTGGTCG�3',
β�actin�R: 5'�GCCGGACTCATCGTACTCCTG�3')
were designed based on the sequences encoding of
putative zebrafish ankha, ankhb, and β�actin.

Database Searches and Phylogenetic Analysis

Database searches were carried out using the Blast
program at the National Center for Biotechnology
Information (Altschul et al., 1997). According to
above procedures, cDNA clones encode Ankha and
Ankhb were cloned and amplified from embryonic
zebrafish mRNA. The presumptive Ankha and Ankhb
amino acid sequences were determined with the Wis�
consin Sequence Analysis Package v. 10.0 (GCG). The
Gap program of that package was used for pair com�
parisons, and the Pileup and Prettybox programs used
for multiple comparisons. ExPASy ProtParam tool
(http://expasy.org/tools/protparam.html) was used to
predict the pI and MW of Ankh. The Clustalw molecu�
lar evolution genetic program was used for our phylo�
genic tree analysis (http://www.ebi.ac.uk/clustalw/).

Whole Mount in situ Hybridization,
Cryosection and Images

The procedures for whole mount in situ hybridiza�
tion, and cryosection have been described previously
(Pai and Chen, 2010; Peng et al., 2010; Lee et al.,
2011), except that ankha and ankhb (this study) were
used as probes. They were digoxigenin (DIG)�labeled,
after we cloned their partial DNA fragment. For image
analysis, all embryos were observed under a micro�

scope (DM 2500, Leica, Germany) equipped with
Nomarski differential interference contrast optics
(Kramer Scientific) and a digital camera (Cannon,
Japan).

RESULTS AND DISCUSSION

Comparison of Deduced Amino Acid Sequences

By searching GenBank, we found two putative
zebrafish ankh sequences (ankha: NM_001030259,
and ankhb: NM_194370). The deduced amino acid
sequence of zebrafish Ankha revealed a 496�amino
acid polypeptide, whereas the deduced amino acid
sequence of zebrafish Ankhb revealed a 501�amino
acid polypeptide (Fig. 1). The zebrafish Ankha/Ankhb
polypeptide shares sequence identities of 74–82% of
the reported Ankh of human, bovine, mouse, rat,
chicken, Xenopus, medaka and fugu. In addition, we
used the Clustalw program to determine the phylo�
genic similarities between zebrafish Ankha/Ankhb
and that of other known species. The phylogenic tree
generated by the program showed that zebrafish
Ankha/Ankhb (79%) was more closely related to
medaka and fugu’s Ankh than those from higher verte�
brates (data not shown). Moreover, ankha/ankhb gene
transcripts from selected vertebrates and their molec�
ular features are summarized in table. These data
reveal that most Ankh proteins have alkaline pIs
(7.61–8.27), but medaka Ankh and zebrafish
Ankha/Ankhb proteins share acidic pIs (6.42–6.97).

Developmental Expression of Zebrafish 
ankha and ankhb

Next, we determined the developmental expres�
sions of zebrafish ankha and ankhb by RT�PCR, and
results revealed that endogenous ankha expressed
from 6 hpf to 7 dpf, and ankhb expressed from 1�cell
(0 hpf) to 7 dpf (Fig. 2). Although RT�PCR products
of ankha were undetectable at 1�cell (0 hpf), faint sig�
nals were detected by nested RT�PCR analysis (data
not shown). These observations indicated that zebrafish
ankha and ankhb are maternal inherited genes.

Spatiotemporal Expression of Zebrafish ankha 
Transcripts during Early Development

To determine the spatiotemporal expression pat�
terns of ankha during early development, we per�
formed whole mount in situ hybridization using a
ankha antisense DIG�labeled riboprobe. Zebrafish
ankha transcripts were first detected from 1�cell stage
to cleavage period (Figs. 3a, 3b), and extended their
expression from the gastrula period to the early segmen�
tation stages (Figs. 3c, 3d). At 24�hpf, 36�hpf, 2�dpf, and
3�dpf, the zebrafish ankha transcripts were restricted
to trunk and head regions (Figs. 3e–3h). Interestingly,
zebrafish ankha transcripts were down�regulated to a
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very faint level at 5�dpf (Fig. 3i), but the expressions
appeared again at retina at 7�dpf (arrow, Fig. 3j). On
the basis of these observations, we conclude that

zebrafish ankha is a maternally inherited gene,
restricting its expression in head and trunk at early
embryonic stages.
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Fig. 1. Comparison of the deduced amino acid sequence of zebrafish Ankha/Ankhb with those of other known species. The infor�
mation was obtained from the GenBank nucleotide sequence database and Ensembl with the following accession numbers:
human (NM_054027.4), bovine (NM_001109793), mouse (NM_020332), rat (NM_053714), chicken (NM_001012562), Xeno�
pus (NM_001090455), medaka (ENSORLG00000011729), fugu (ENSTRUG00000008542) and zebrafish Ankh. Amino acid
residues similar to those of the zebrafish Ankha/Ankhb are presented in black. TM: transmembrane domain.

Summary of ankh genes from selected vertebrates

Species, gene 
names

Coding 
region, aa Mw, kDa pI GenBank accession number References

Human ANKH 492 54.2 8.00 NM_054027.4 Hughes et al., 1995

Bos ankh 492 54.2 7.61 NM_001109793 Zimin et al., 2009

Mouse Ank 492 54.3 8.01 NM_020332 Hakim et al., 1986

Rat Ankh 492 54.3 8.01 NM_053714 Ho et al., 2000

Chicken ankh 493 54.5 8.27 NM_001012562 Wang et al., 2005

Xenopus ankh 492 54.0 8.02 NM_001090455 Nürnberg et al., 2001

Medaka ankh 492 54.2 6.42 ENSORLG00000011729 Ensembl

Fugu ankh 494 54.5 7.64 ENSTRUG00000008542 Ensembl

Zebrafish ankha 496 54.6 6.42 NM_001030259 NCBI; this study

Zebrafish ankhb 501 55.4 6.97 NM_194370 Ho et al., 2000;  this study
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ankha
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Fig. 2. RT�PCR analysis of ankha and ankhb gene transcripts, using total RNA extracted from the embryos of different develop�
mental stages. Top panel: ankha; middle panel: ankhb; and bottom panel: loading control (β�actin). Stage of each sample is indi�
cated on the top.
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Fig. 3. ankha expression during early embryonic stages. (a) One�cell, top view, (b) at 6�hpf stage, lateral view, (c) at 12�hpf and
(d) 18�hpf, top view, (e) at 24�hpf and (f) 36�hpf, lateral view, (g–j) at 2�, 3�, 5� and 7�dpf, lateral view.
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Spatiotemporal Expression of Zebrafish ankhb 
Transcripts during Early Development

Again, the spatiotemporal expression patterns of
ankhb during early development were examined by
whole mount in situ hybridization. Results showed
that zebrafish ankhb transcripts were first observed
from 1�cell stage to cleavage period and their expres�
sion extended from the gastrula period to the early seg�
mentation stages (Figs. 4a–4c). By 18�hpf, the
zebrafish ankhb transcripts were detected in somite,
and in the head region (Fig. 4d). By 24�hpf, ankhb
transcripts strongly expressed in the entire head region
and in the guts, and that were further confirmed by

cryosectioning (Figs. 4e, 4e'). Specially, we found that
the expressions of zebrafish ankhb were strongly
detected in pharyngeal arches at 36�hpf, 2�, 3� and
5�dpf (arrows, Figs. 4f–4i). By 7�dpf, no obvious sig�
nals were observed (Fig. 4j). On the basis of these
observations, we conclude that zebrafish ankhb is a
maternally inherited gene, restricting its expression in
head, gut as well as pharyngeal arches.

Comparison of ankh Gene Expression Patterns 
between Zebrafish and Mouse

Since ank is a evolutionary conserved gene among
different vertebrate species, it would be interesting to

(а)  1 cell (b) (c)

(e) (f)

(g) (h)

(i) (j)

6 hpf 12 hpf 18 hpf

24 hpf 36 hpf

2 dpf 3 dpf

(e')

(e')

(d)

5 dpf 7 dpf

Fig. 4. ankhb expression during early embryonic stages. (a) One�cell, top view, (b) at 6�hpf stage, lateral view, (c) at 12�hpf, top
view, (d) at 18�hpf, (e) 24�hpf and (f) 36�hpf, lateral view. Cross�sections along the plane indicated by lines were shown in (e').
(g–j) At 2�, 3�, 5� and 7�dpf, lateral view.
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compare their expression patterns between mouse and
zebrafish. Though strong ank expression were detected
in the developing mouse limbs, the ank mRNAs were
also detected in many non�skeletal tissues of adult
mouse, including heart, brain, liver, spleen, lung,
muscle, and kidney (Ho et al., 2000). Inactivation of
ankh not only leads to skeletal defects in mice and
human, but also results to increased calcification in
kidneys of adult mice (Storm and Kingsley, 1996; Ho
et al., 2000). These observations suggest that ankh
plays an important role in both skeletal and non�skel�
etal tissues. We have shown that ankha/ankhb tran�
scripts were detected strongly in the presumptive head
region (skeletal cell�rich), gut (non�skeletal soft tissue)
and pharyngeal arches (skeletal cell�rich) of developing
zebrafish embryos. These expression data are consistent
with that of mouse ANK. Taken together, we suggest that
zebrafish Ankha/Ankhb might play similar roles com�
pare to that of mouse Ank.

In conclusion, this study highlights the distinct
expression pattern of two structurally related zebrafish
ankha and ankhb genes. They are both maternally
inherited genes. Expression of ankha is mainly
restricted in head region whereas ankhb is restricted in
head region, gut and pharyngeal arches. This informa�
tion may provide more insight into the molecular
structure and expression patterns of the lower verte�
brate ank genes.
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